TOXICITY OF SOME NATURAL PRODUCTS AGAINST THE ADULT STAGE OF BROWN BARK APHID, Pterochloroides persicae AND WHITEFLY, Bemisia tabaci UNDER LABORATORY CONDITIONS.

By

A.A.M. Thabet

Department of Plant Protection, Faculty of Agriculture Sana'a University, Republic of Yemen

Recived 14/7/1999 - Accepted 22/11/1999.

ABSTRACT

A major study that needs to be carried out present different options alternative in the form of pesticides management. Three plants collected from locations throughout Yemen, namely Neem, Azadirachta indica; Sodom Apple, Calotropis procera and Africa Rue, Pegamum harmala were assayed against adults stage of two sucking insects commonly present in Yemen environment.

The brown bark aphid, Pterochloroides persicae (Cholodk) and the whitefly, Bemisia tabaci (Genn.) are serious insects of some fruit and vegetable plants in Yemen. The bioassay based on exposure the adult of both insects to discs and tomato seedling, which were dipped in the plant extract. Mortalities were recorded at 24 and 48 hours after treatment according to the LC₅₀ values. Neem extract showed the highest insecticidal activity against P. persicae followed by Sodom Apple and Harmala extracts after 48 hr of treatment. The LC₅₀ values were 64.94, 110.34 and 1880.89 ppm, whereas 24 hr LC₅₀ values were 95.36, 210.70 and 1900.11 ppm, respectively. It was found that B. tabaci adult was more susceptible than P. persicae. The extract of Neem gave the highest toxicity against the adult of B. tabaci followed by Sodom Apple and African Rue at 24 and 48 hr. The LC₅₀ values were 52.48, 96.86 and

155.42 ppm during the initial 24 hr exposure period, whereas 48 hr LC₅₀ were 8.93, 12.86 and 33.42 ppm, respectively.

The present study suggest that natural agents, such as these suitable plant extracts, have the advantage of efficiency, highly selective, suitable for use in programs for integrated pest management, high mammalian safety, low costs and biodegradable to non-toxic products.

INTRODUCTION

In recent years, synthetic pesticides have come under increasing attack due to their persistence in the environment, insect resistance and high mammalian toxicity. Considerable care is needed to avoid the pollution of human food with pesticides. Therefore, seeking means of safe use of pesticides is natural need.

New possible alternatives for using safer methods of control have been explored. One of these approaches is the use of natural plant extracts, which have recently received considerable attention (El-Seabe, et al, 1986; Hough Goldstein and Hahn, 1992; Swidan, 1994 and Thabet, 1999).

Insecticides derived from higher plants are desirable because they could be safer to the environment, the user and to the consumers, as well as compatible with other integrated pest management tactics (Finney, 1990).

The use of antifeedants in pest control has attracted the attention of several investigators. various plant extracts were mentioned as inhibitors to the feeding of phytophagous insects. Chan and Waiss (1978) stated that feeding habits and host plant specialization are governed by the effects of secondary plant substances than attract or repel the insects and influence their locomotor, ovipositional and feeding behavior. Also, Termini et al., (1996) pointed out that the contents of alkaloids, flavonoids, saponins and triterpenes are suggested to be responsible for repelling the cotton leafworm away from sesame and mungbean plants.

the present study aimed to comprises a new source for screening plants collected from the flora of Yemen for their insecticidal activity against the brown bark aphid, *Pterochloroides persicae* and whitefly, *Bemisia tabaci* under laboratory conditions. Such screening will help to discover new alternatives for suppressing harmful insects without any hazard effect to the environment and human health impact.

MATERIALS AND METHODS

A. Plant Materials

Neem Seed Kernels (A. indica) was collected from Abyan Governorate, while Harmala Seeds (P. harmala) was collected from the Field Farm Station for Agriculture, Sana'a University, Sana'a Governorate. Leaves of Sodom Apple (C. Procera) were collected from Taiz Governorate. Plant materials were air dried in the laboratory and then ground in a high speed Micromill (Table 1).

B. Insects Rearing

The gain brown bark aphid, P. Persicae (Cholodk) was collected from the compact colonies which live on the trunk and branches of peach trees in the Field Farm Station of Agriculture, Sana'a University, Yemen. This strain had been reared under laboratory conditions (25±2°C and 60±5% R.H.) The whitefly, B. tabaci was collected from the Farm of the Faculty of Agriculture, Sana'a University and reared in the laboratory on sweet potato plants. Cultivated plots were kept inside muslin sleeves. The sweet potato leaves were infested by pupal stage of whitefly insects and let adults emergence. The white fly reared under laboratory conditions (27±2°C and 70±10 R.H.).

C. Preparation of Plant Extract

Fifty gram of each ground seeds or leaves were extracted in Soxhlet Apparatus using petroleum ether 60-80 °C followed by extraction with acetone, and finally with methanol (Table 1). The solvents were chosen according to the maximum yield of the crude obtained. The crude extracts were evaporated under reduced pressure, and after complete

A.A,M. Thabet.

evaporation of the solvent, the residues were bottled in small glass vials and kept in a freezer till used.

D. Bioassay Technique

The crude plant extracts were examined for their insecticidal activity against the adult stage of P. persicae and B. tabaci. Methods of bioassay for the aphid is based on the adult branch of peach discs which were dipped in the tested extract for 3 seconds. Tomato seedlings were treated by the tested extract using a hand sprayer and left for dryness. The peach discs and tomato seedling were transferred to glass jar (2 Kg capacity) and infested with 20 adult of either P. persicae or B. tabaci and then jars were covered by muslin cloth, five concentration of 0-4000 ppm were prepared for each plant extract. Preparing aqueous suspension required the addition of 1.25 ml Triton x-100 to keep the suspension out of setting and to help as wetting emulsifying agent. Five replicates were employed foe each concentration. Mortality were examined after 24 and 48 hr by checking the insect under a Glass Magnifier Lens and the corrected percentages of mortality were calculated according to Abbot's formula (1925). Slope of log concentration probit regression lines and LC₅₀ values for the tested extracts were calculated according to Finney (1952).

RESULTS AND DISCUSSION

The insecticidal activity of Neem, Sodom Apple and African Rue were sleeted and tested against the adult stage of *P. persicae* and *B. tabaci*. The toxicity limits were evaluated by finding the most (100% kill) and least (no death) concentrations. Mortalities were recorded during the initial 24 and 48 hr exposure period. According to the LC₅₀ values, data revealed that the extract of Neem showed high insecticidal activity against the adult of *P. persicae* after 48 hr of treatment followed by Sodom apple and then African Rue, where the LC₅₀ values were 64.94, 110.34 and 1830.89 ppm, respectively. The present results match with those obtained by many investigators. Schauer (1984) studied the effect of Neem extracts on aphids and he found that aphids did not affect when sprayed directly with moderate concentration of Neem extracts (50-200 mg/Kg).

Table (1): General Characterisitics of The Plants Tested for Their Insecticidal Activity Against Brown Bark Aphid (Prerochloroides persicae) and Whitefly Adults (Bemisia tabact).

					A	
		Extract	Extracted Plants			Bioactive Chemical
S	Scientific	Locally	Locally English	Parts	Solvents	Constituents
	Name	Мате	Name	Extracted		
12	Azadirachta	Mraimra	Neem	Seeds	Petrolium	*Triterpenoids(Meliantriol;
Ξ	indica				ether	Salanin, and Azadirachtin
	•				208-09	
ı	Asclepiad- Calotropis	El-Oshar Sodom	Sodom	Leaves	Methyl	**Cardenolide
₽	procera		Apple		actohol	(Calactin; Calotropin; Calotoxin;
						Uscharidin; Uscharin; Voruscharin
						;Thiazolidine;Thioazoline).
ş •	Редапит	Harmal	Africa	Seeds	Petrolium	***Alkaloids
~=	harmala		Rue		ether	(Peganine; Peganindine; Harmine
					CO-80C	and Harmaline)

 Kraus and Cramer, (1978); Siddiqui. et al. (1978); Nakanishi (1975) and Warthen (1979) Zanno. et. al. (1975), and Butterworth et.al. (1972).

** Cheung et al., (1980).

*** Khashimov, et al. (1970), Ivanvo and Teney, (1965); and Siddiqui and Kamal, (1964).

(Pterochloroides persicae) And Whitefly (Bemisia tabaci) Under Laboratory Conditions. Table (2): Insecticidal Activity of Plant Extracts Against The Adults of Brown Bark Aphid

Source of			Perochloroides persicae	rsicae		Remisio tabaci	101
Extracts	Time (hr)		•				2
(Locally	Post	1C30*	1.030		* U V	1 0 20	
Name)	treatment	(mdd)	Confidence Limits Slope+S.E	s Slope+SE	(maa)	(nom) Confidence Limits Slope+S F	S Slone+S E
chta	24	95.36	62.24-137.26	1.99±0.82	52 48	31 52-88 14	3 40+0 60
indica	48	64.94	49.20-175.06	2.44±0.66	8.93		4 99+0 40
(Mraimra)							
Calotropis	24	210.70	94.14-369.20	2.17±0.46	98.96	38.20-155.86	3 60+0 62
procera	48	110.34	53.18-209.11	2.42+0.60	12.86	10.67-30.92	2 64+0 44
(Ei-Oshar)							#: OTFO: #
Peganum	24	1900.11	713.40-3380.14	1 86+0 47	155.42	90 14-220 70 3 1440 80	O OTPI C
harmala	48	1830.89	642.19-2962.10	1 94+0 81	33.42	67.012.10.40	2.00.07
(Harmala)				10.04		04:01-17:10	1.99±0.42

* Calculated from the regression equation of the data after being converted to probits according to Finney (1952).

This was probably due to the active ingredient of Neem unable to penetrate the cuticle of aphids. Thus, aphids can be controlled only by feeding on plants. Also azadirachtin was shown to have systemic effect through plant and affect growth development of other classes of insects. Both azadirachtin and ethanolic extracts of Neem seeds were absorbed by the roots of bean plants and translocated into foliage and plants (Gill and Lewis, 1971). Bean seeds soaked in Neem seed extract gave seedlings that were protected from damage locusts and systemic uptake was demonstrated in wheat, barley, rice, sugar cane, tomatoes, cotton, chrysanthemum, and small spindle trees after 1% Neem seed dust was applied to the soil in which the crop plants were growing and the results crops were protected for up to 10 weeks despite early rains (Radwanski, 1977). Also, antifeedant and repellent properties of azadirachtin have been documented clearly among numerous chewing insects (Warthen, 1979, Jilani and Sexena, 1990). Using an electronic feeding monitor system, Reuter et al, (1993) concluded that the mean number of feeding probes by green peach aphid, Myzus persicae (sulzer), increased >1.5 times on plants treated with azadirachtin than on control plants. These results suggest that azadirachtin may interfere with the location of suitable feeding sites.

Lowery and Isman (1996) found that the exposure of adult green peach aphid, *M. persicae* (Sulzer), and lettuce aphid, *Nasonovia ribisnigri* (Mosley) for 3 day to a 1% solution of Neem seed oil applied to leaf discs reduced the number of live offspring by 82 and 66%, respectively, compared to control values.

In addition, data in the same Table indicate that the extract of A. indica gave the highest toxicity against whitefly followed by C. procera and P. harmala extracts at 24 and 48 hr exposure periods. The LC₅₀ values during the initial 48 hr exposure period were 8.93, 12.86 and 33.42 ppm, respectively, whereas 24 hr LC₅₀ values were 52.48, 69.86 and 155.42 ppm respectively against the adult stage of whitefly. These finding of behaviors modification my be consistent with the results observed herein for B. tabaci. Closer scruting of their feeding behaviors in response to azadirachtin may provide and feasibility of Neem extract as management option for whitefly.

REFERENCES

- Abbott, W.W. (1952). A method of computing the effectiveness of an insecticide J. Econ. Entomol, 18:265-267.
- Chan, B.G., and A.C. Waiss (1978). Condensed tannin, an antibiotic chemical from Gossypium hirsutum. J. Insect. Physiol., 24:113-118.
- El-Sebae, A.H.; H. El-doksch; A.El-Shazly and M.A. Saleh (1986).

 Desert plant as sources for pesticides and insect growth regulators. Proceedings of Intern. Conf. Environ. Protection. Sofia, Bulgaria, May, 16-19.
- Finney, J. (1990). Where do we stand? were do we go? in world crop protection prospect. Seventh International Conference of pesticide chemistry. Hamburg, W. Germany. pp 26.
- Finney, D.J. (1952). Probit analysis, statistical treatment of the sigmoid response Curve. Cambridge University press. pp. 256.
- Gill, J.S., and G.T. Lewis (1971). Systemic action of an insect feeding deterrent. Nature, 332:402-403.
- Hough. Goldstein, J. and S.P. Hahn (1992). Antifeedant and oviposition deterrent activity of an aqueous extract of *Tanacetum ulgar*(L.) on two cabbage pests. Environ. Entomol 21(4):837-844.
 - Jilani, G. and R.C. Sexena (1990). Repellent and feeding deterrent effects of turmeric oil, sweetflag oil, Neem oil, and a need based insecticide against lesser grain borer (Coleoptera:Bsostrychidae)

 J. Econ. Entomol., 83(12):629-634.
 - Lowery D.T., and M.B. Isman (1996). Inhibition of aphid Homoptera: Aphididae Reproduction by Neem seed oil and Azadirachtin-J. Econ Entomol., 89(3): 602-607.
 - Radwanski, S. (1977). Neem tree 3. Further uses and potential uses. Wild Crops Livestock, 29:. 167-168.
 - Reufer, L.L.; N.C. Toscano, and T.M. Perring (1993). Modification of feeding behavior of *Myzus persicae* (Homoptera: Aphididae) by selected compounds J. Environ. Entomol., 22:915-919.

- Schauer, M. (1984). Effects of various formulated Neem seed extracts on homopterous insects. Proc. 2nd Int. Neem Conf. (Rauischholzhausen, 1983) pp. 141-149.
- Swidan, M.H. (1994). Antifeedant activity of 24 plant extracts against larvae of *Spodoptera littoralis* (Biosd) (Lepidoptera Noctuidae. Alex. J. Agric. Res., 39(3):363-374.
- Termini, F.A., H.A. El-Doksh, S.M. Abdel Halim and N.I. M. Nousier (1996). Repellency of *Spodotera littoralis* on soybeans by sesame and Mungbeans. Alex. Sci. Exch, 17(4): 331-341.
- Thabet, A.A. M. (1999). Joint action of cypermethrin insecticide and some natural control agents against cereals aphids and their predators. J. Pest. Cont. and Environ. Sci., 7(3):25-38.
- Warthen, J.D. Jr.(1979). Azadirachta indica: A source of insect feeding inhibitors and growth regulators. U.S. Dep. Agric. Rev. Man., ARM-NE-4.
- Zanno, P.R.; I. Miura, K. Nakanishi, and D.L. Elder, (1975). Structure of the insect phagorepellent azadirachtin.

الملخص العربي

سمية بعض المنتجات الطبيعية ضد الحشرات الكاملة لمن القلف الاسود (Pterochloroides persica) والذبابة البيضاء (Bemisia) القلف الاسود (tabaci) تحت الظروف المعملية

> د.عبد الرحمن على محمد ثابت قسم وقاية النبات - كلية الزراعة - جامعة صنعاء - الجمهورية البنية

لقد تأكدت المشاكل الصحية والبيئية المصاحبة الاستخدام المبيدات التقليدية المصنعه وكذلك مقاومة الحشرات لتلك المبيدات مما أدى السب تركيز الجهود حول تطوير استخدام مركبات طبيعية كبدائل لتلك المبيدات .

تهدف الدراسة الى تقييم فعالية ثلاثلية مستخلصات نباتيه لكل من بذور شجرة النيسم (Calotropis procera) وبذور نبسات

العرمل (Peganum harmala) السائدة في كثير من المناطق الطبيعية في الجمهوريــة اليمنية- على الحشرات الكاملة الأهم الآفات الماصـــة مثـل حشـرة مـن القلـف الاسـود (Pterochloroides persicae) والذي يصيب كثير من أشجار اللوزيات فــي اليمـن وكذلك الحشرة الكامة للنبابة البيضاء (Bemisia tabaci) والتي تهاجم كثير من محاصيل الخضر •

ونتائج التقييم المعملي لمستخلصات تلك النباتات أوضحت أن مستخلص بذور شهرة النيم كان أكفأ المستخلصات وأكثرها فعالية كمبيد حشري ضد حشرة من القلف الأسود وكانت قيم التركيزات المبية لموت ٥٠% من الحشرات المعاملة بعد ٤٨ مناعة من التعسرض لسها كالتالي: ٩٤ ر ١٤ جزء في المليون يلي ذلك مستخلص العشار (٣٤ ر ١١ جزء في المليون) ثم مستخلص بذور الحرمل (٩٨ ر ١٨٠٠ جزء في المليون) بينما كانت قيم التركيزات المسببة لموت ٥٠% من الحشرات الماملة لتلك لمستخلصات بعد مرور ٢٤ مساعة من التعسرض كالتالي: ٣٦ ر ٥٠ ، ٧٠ ر ٢٠ ثم ١١ ر ، ١٩ جزء في المليسون على التوالى وكانت المستخلصات مقارنة بالحشرة الكاملة لمن المشرات الكاملة النبابة البيضاء أكثر حماسية لتلك المستخلصات مقارنة بالحشرة الكاملة لمن الأسود ٠

ولقد كان مستخلص بذور شجرة النيم أكثر المستخلصات كفاءة خاصة بعد مرور ٤٨ ساعة من تغنية الحشرات الكاملة على شتلات العلماطم المعاملة بتلك المستخلصات، وكانت تم التركيزات المسببة لمو ٥٠% من حشرة الذبابة لبيضاء لمستخلص بالمور شهرة النيام (١٣٩ هجزء في المليون) يليه مستخلص أوراق العشار (١٣٩ جرزء في المليون) شهر مستخلص بنور الحرمل (٢٤ ر٣٣ جزء في المليون)، بينما كانت قيم التركيزات المسببة الموت ٥٠٠ من الحشرات الماملة لذبابة البيضاء بعد مرور ٢٤ ساعة من التعرض كالنالي المراق معرد مرور ٢٤ ساعة من التعرض كالنالي المراق المشار ثم ١٩٨ و جزء في لمليسون لمستخلص أوراق المشار ثم ١٤٠ و الحرمل و مستخلص النيم ثم ١٩٨ و الحرمل و الحرمل و المعرمل و المستخلص بنور الحرمل و المعرمل و المستخلص بنور الحرمل و المعرمل و المستخلص بنور الحرمل و المعربة و المليون لمستخلص بنور الحرمل و المليون لمستخلص بنور الحرم و المليون لمستخلص بنور الحرم و المليون لمستخلص و المليون المليون لمستخلص و المليون المليون لمستخلص و المليون المليون المليون لمستخلص و المليون المليو

ومن نتائج الدراسة المعابقة يتضح أن المنتجات الطبيعية للنباتسات المتبرة أثبت فعاليتها وثباتها بالاضاة إى أن لها صفة الاختيارية في مكافحة الأقات وبذلك يمكن أن تبستخدم في مجال المكافحة المتكاملة للأقات وذلك يرجع لامانها على الصحة والبيئة بالاضافسة السي تكلفة الاثتاج المنخفض وسهول استخدامها ونواتج تعطمها الحيوى في البيئة غير سامة علسي الكاتنات الغير مستهدفة •